Re: Homo erectus (sensu stricto) the most aquatically adapted hominin?


Hi Gareth,


Would it be possible to reveal the source of this text, please? I’d like to read it.


I agree that climate has influenced anthropoid evolution at many stages and in different ways, although I don’t believe sapiens are the most aquatic. I think early Homo was more aquatic than we are now.


If we look at the evidence, many of our “aquatic” adaptations stretch back at least as far as the early Miocene and most of the changes seem to be instigated by climatic changes.  


[1st aquatic stage: Hominoidea]

30-25 Ma Climate: very hot, humid, subtropical forests; tectonic upheaval and rifting causing vast areas of East Africa to become flooded, creating forested islands in vast East African lakes.

25-20 Ma: orthograde body plan and modifications towards bipedal posture, suspensory adaptations of the wrist, hand, shoulders and arms, larger, wider thorax, loss of tail, etc.
20 – 14 Ma: gradual increase in size from small-bodied primates to large chimp sized apes

Some time between 25 Ma and 16 Ma: partial loss of pelage (great apes relative to macaques)

Overall increase in eccrine gland distribution (between OWMs and apes)

Probable reduction in olfactory ability


c. 18- 16 Ma Hylobatidae diverge


16-14 Ma: Climate: temperature decrease, reduced humidity & loss of biodiversity in Africa; increasing biodiversity, humid sub-tropical forests & vast bodies of water in Eurasia, land bridges between the two continents. Disappearance of most apes from Africa. Appearance of many ape species in Eurasia.

15 Ma: loss of uricase mutation and the ability to store sugars as fat



15-13 Ma: the ability to fashion stone tools

c. 15-14 Ma: Pongo diverges

14 Ma: plantigrade locomotion (quadrupedal)

12-11 Ma: loss of prognathism, robust jaws, postural bipedalism (wading)

11-9 Ma: Vallesian crisis causes the extinction of many apes (loss of forests, loss of edible fruits, spreading grasslands, seasonal food availability).

10-7 Ma: bipedal hominids roam the river valleys & great lakes of southern Europe & the Tethys-Med coasts.
Smaller, more thickly enamelled dentition – change of diet.



10-6 Ma: terrestrial bipedalism develops

c. 10-8 Ma: gorilla divergence

7 Ma: human-like P4 dental root morphology

6 Ma: human-like foot morphology (loss of arborealism)


6-5 Ma: Pan / Homo diverge

5.9 – 5.3 Ma: Mediterranean Salinity Crisis: great unidirectional migrations of fauna away from the southern Med, towards Africa.

5.3 Ma: Zanclean Megaflood cuts off land bridge between Eurasia and Africa.

Pliocene: 5.3 – 2.6 Ma. Sea-levels rise by up to 30 m. Hyper aridity in the Arabian Peninsula prevents migration of fauna eastwards.

During much of this period, the Arabian Peninsula is effectively cut off from the rest of the world.


4-3 Ma (PTERV1 virus throughout Africa, affects all African apes, but not Homo or Orangutans)


[Panini / Australopithecines]

Climate: Loss of forests and wetlands, increase of savannah and mosaic environments

5-2 Ma: Gradual reversal from upright bipedalism towards arborealism, and eventually, knucklewalking (also in Gorilla – homoplasy).


[Early Homo]

2.6 – 2.0 Ma: Pleistocene cooling, sea-level decrease, vast intercontinental shelves appear, land bridges, intertidal zones, migration routes

2.0 Ma: Homo appears: taller, larger with longer legs, increased thoracic capacity, heavier leg bones, heavier crania, larger brain (significant development of cortex associated with vision and manual dexterity), improved dexterity, platycephaly, hooded nose, thick brow ridges, improved shoulder rotation, no evidence of sexual dimorphism
More sophisticated stone tool use, shellfish consumption.


[Later Homo]

2.6 Ma – 2.0 Ka: Pleistocene cooling, sea-level decrease, fluctuating temperatures (between glacials).

Ear exostoses, larger brains, heavy bones, multiple crania fractures, larger eyes (cold-water diving?)


[Homo sapiens]

300 Ka – present: Holocene (relatively stable climate, less overall humidity)

More gracile forms (taller, thinner – like waders), rounder crania, shorter femoral necks (adaptation for running). Loss of platycephaly, heavy brow-ridges, elongated crania. Brain capacity reduction, flatter faces, smaller teeth, smaller noses, lighter bones, smaller thoracic capacity,

Suggests H. sapiens was more terrestrial than earlier Homo.


Present – future? Anthropocene: Global warming, global climate fluctuations, sea-level rise, mass extinction events…where next?




From: <> On Behalf Of Gareth Morgan
Sent: Monday, April 18, 2022 10:57 AM
Subject: Re: [AAT] Homo erectus (sensu stricto) the most aquatically adapted hominin?


Homo sapiens is, if anything, more aquatic than Homo erectus.



"As far back as 17 March 1960, Professor Sir Alister Hardy noted in The New Scientist that modern humans have many features that suggest an aquatic phase in our evolution at some time in the distant past.  

The assumption was that a group of primates became isolated on an island or some other inaccessible waterside environment and survived by becoming adapted to a semi-aquatic lifestyle in the course of that single evolutionary event. Subsequent discoveries have provided data that both support and contradict that hypothesis. 

The present investigation proposes an alternative model whereby, over millions of years, a series of emergencies, in the shape of climate fluctuations, from fertile to desert conditions and coinciding with glacial and interglacial epochs, repeatedly imposed very stringent survival pressures on every group of hominids. From the late Miocene onward, scores of such events dictated the selection criteria for gradual adaptation to an opportunistic aquatic diet in a punctuated series of evolutionary steps. 

These adaptations were cumulative, and the fossil record includes progressively more numerous examples of each new version of pre-human and human with the passage of time, progressively larger deposits of bivalve shells and other edible aquatic food species in shell middens, and more widely distributed locations for the stone tools needed to process them efficiently. 

This interpretation of the available evidence satisfies all the significant objections to Hardy’s theory and leads to the conclusion that, physiologically, we are more aquatic now than we have ever been, and the astonishing current world records for breath holding and free diving would seem to support that view."


The idea of a single, brief isolation event producing all (or any) of our aquatic adaptations was never really credible.



From: <> on behalf of algiskuliukas <algis@...>
Sent: Monday, April 18, 2022 10:07 AM
To: <>
Subject: [AAT] Homo erectus (sensu stricto) the most aquatically adapted hominin?


For those of us who are open minded enough to answer Hardy's question "Was Man More Aquatic in the Past?" with a cautious affirmative, a second question follows "If, so when was that and how much?"

Having thought about this for twenty-five years and studied human evolution (MSc from UCL with distinction and PhD in human bipedal origins from UWA) I have come to the conclusion that the answer to the second question should be "very early modern Homo sapiens ca 200,000 years ago or so"... and... "not much".

Some proponents (e.g. Marc Verhaegen and Stephen Munro) would argue that a better answer would be "Homo erectus (sensu stricto) - i.e. the Asian, rather than African forms" and "that they were predominantly bottom divers."

That's quite a difference.

So, I'd like to discuss this openly to see if I have missed something. 

Let me start the ball rolling...

Marc always cites pacheostosis (heavy bones) of H. erectus as leaving "no other possibility" than bottom diving for this hominin but were their bones really that heavy? If you look at the Nariokotome boy femur, for example, it is remarkably gracile. Where are the papers in the literature that backs up this claim?

Marc also cites their pelvic shape as being platypelloid, with long femoral necks as further evidence but, again, that's not what I see in the literature. Nariokotome boy's pelvis is remarkably narrow actually, android rather than platypelloid. In any case what his platypelloidy got to do with bottom diving? Dugongs/manatees do not share this convergence. Their pelves, appear to be on their way to becoming vestigial like cetacea.

Whether they had heavy bones or not, there is undeniable evidence of significant weight bearing in the bones of Homo erectus. The tibial plate, the oval shaped distal femoral condyles, the robust femoral head, the large acetabulae with superiorly orientated lunate surface. The robust sacral body and large lumbar vertebrae all speak of an upright, walking, terrestrial striding biped - just like us. They seem to have been predominantly striding bipeds, not divers.

Please don't misunderstand me. I am not suggesting that Homo erectus did not swim or dive - just that they didn't do so very much, and specifically, not as much as we modern human did, or still do.

When Homo erectus reached the islands of Java and Flores some 1.8 million years ago, they could have done so without getting their feet wet as the current archipelago of Indonesia has been connected via land bridges from time to time. Of course, I have no doubt they often went swimming and diving in coastal shallows but, if they were as adept as Marc suggests (a predominantly bottom diver, remember) then it is remarkable that the narrow strait of water between Bali and Lombok across the Wallace line, just 20km wide, was never crossed by these diving hominins in 1.8 million years. If they did cross, they would have certainly populated the whole of the Australasian continent as that too was all joined by land at various times since. And yet we so no evidence of any human like species in Australia until 60,000 ago or so.

I must remind that modern humans regularly swim across such stretches of open water. The Perth - Rottnest swim is run every year and has thousands of participants. (,teams%20of%20two%20or%20four.) It is about the same distance as Bali - Lombok via Penida. And of course far greater distances have been crossed than that, such as the Channel between England and France.

Of course, absence of evidence is not evidence of absence but, it seems to me that if we are to remain true to scientific principles we must base our ideas on evidence and here, the evidence is that Homo sapiens is, if anything, more aquatic than Homo erectus.

Algis Kuliukas
April 2022

Join to automatically receive all group messages.